自动控制理论——拉普拉斯变换定义及性质

一、拉普拉斯变换的定义

对复值函数f(t),若\int _0^\infty f(t)e^{-st}dt在复平面上的一个区域D(s \in D)内收敛于F(s),则称

F(s)=\int _0^\infty f(t)e^{-st}dt

为函数的拉普拉斯变换(简称拉氏变换),记为

F(S)=L[f(t)]

科技领域,一般以时间为自变量的函数进行拉普拉斯变换,即在t<0时,函数无意义或不需要考虑,所以在拉普拉斯变换中规定象函数f(t)\equiv 0,t<0

例1:求函数u(t)=1的拉普拉斯变换

例2:求函数f(t)=e^{at}的拉普拉斯变换,其中a为复常数:

需注意的是拉普拉斯变换要求积分要存在要收敛,所以有s实部大于a的实部。

二、拉普拉斯变换的基本性质

1、线性性质

a_1,a_2为常数,F_1(s)=L[f_1(t)],F_2(s)=L[f_2(t)],则

L[a_1f_1(t)+a_2f_1(t)]=a_1F_1(s)+a_2F_2(s)

2、时移性质

L[f(t-t_0)]=F(s),则对于t_0>0,有L[f(t-t_0)]=e^{-st_0}F(s),其证明步骤如下:

例:L[\int _0^tf(\tau)d\tau]=\frac{1}{s}F(s)

3、频移性质

L[f(t)]=F(s),则对任意常数a,有

L[e^{at}f(t)]=F(s-a)

证明步骤:

4、微分性质

(1)象原函数的微分

L[f(t)]=F(s),且f'(t)也是象原函数,则

L[f'(t)]=sF(s)-f(0^+)

这里,f(0^+)=\lim_{t \to 0^+}f(t),证明步骤:

(2)象函数的微分

L[f(t)]=F(s),则

L[(-t)^nf(t)]=F^{(n)}(s), \quad n=0,1,2,\dots

例:求L[tsinat]

5、积分性质

L[f(t)]=F(s),则

L[\int _0^t f(\tau)d\tau]=\frac{1}{s}F(s),证明步骤如下:

 

 

相关推荐
©️2020 CSDN 皮肤主题: 编程工作室 设计师:CSDN官方博客 返回首页